Living the engaged life: Paul Alivisatos, Winner of the National Medal of Science

Paul Alivisatos with Douglas S. Clark, Dean of College of Chemistry.

Paul Alivisatos is a Berkeley chemistry alumnus and professor, the current Vice Chancellor for Research, a former director of the Lawrence Berkeley National Laboratory, and now the college’s most recent winner of the National Medal of Science.

Yet for all the accolades and accomplishments, what really brought home the value of his research for him was a recent trip to Costco. There, at the front of the store, were all the latest and biggest wide-screen televisions. Among the most highly rated are the Samsung models, which use a quantum dot technology pioneered in the Alivisatos lab and developed at Nanosys, a company he cofounded in 2001.

From steam engines to computers, it’s hard to pin an exact date for when a new technology “starts.” But for nanotechnology, formally defined as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers, the seminal date is usually given as December 29, 1959. On that day the Caltech physicist Richard Feynman gave a talk called, “There’s Plenty of Room at the Bottom.”

In the talk, Feynman noted, “Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things.”

“The periodic table of the elements is two-dimensional,” explains Alivisatos. “Nanotechnology adds a third dimension. As we drill down and make bits of matter smaller and smaller, their properties change, just as properties change as we move across the periodic table.”

As a chemist, Alivisatos came of age in the 1980s, when the foundations for nanotechnology were laid by inventions like the atomic force microscope and the discovery of buckminsterfullerenes, or “buckyballs,” previously unknown forms of carbon. Both these discoveries would later win Nobel Prizes.

Alivisatos wrote his 1986 Ph.D. thesis, “The photophysical properties of molecules near metal and semiconductor surfaces,” in the research group of Charles B. Harris here in the College of Chemistry. For postdoctoral research he moved to AT&T’s Bell Labs, where he worked with Louis Brus, the discoverer of the colloidal semi-conductor nanocrystals known as quantum dots.

Alivisatos returned to the College of Chemistry to join the faculty in 1988, where he has since made several discoveries in the fabrication and use of quantum dots and other nanocrystals. His second startup, Quantum Dot Corporation, develops quantum dots for use in fluorescent sensors in biomedical imaging. The company was acquired by Life Technologies and is now a part of Thermo Fisher Scientific. As a Senior Faculty Scientist at LBNL, Alivisatos developed nanoparticles for energy applications, including photovoltaic solar panels and catalysts for the production of hydrogen and other fuels.

It has been a decade since Catalyst magazine profiled Alivisatos in our first issue. We recently caught up with him in his new office in California Hall. There he demonstrated the latest quantum dot wide-screen television from Samsung and graciously answered our questions.

Q: When you were 10 years old, in 1969, you and your sister left Chicago to live with relatives in Athens, Greece, and attend school there. You left the United States during the fervor of the sixties and moved to a country that was under the control of a military junta. You returned to the U.S. in 1974 to attend the University of Chicago, after civil society had been restored in Greece. How did that experience affect you?

“The distinction between basic and applied research is not helpful. They are nor in opposition, they are woven together.”

A: It was a big life event, a difficult period. I didn’t speak any Greek when I arrived. In some areas the classes were more advanced than in the U.S., so I had to struggle to catch up while I was learning a new language at the same time. But people were very kind.

The great thing for me was that I had to find my own path and make things work. I came through it OK. The Greek government was oppressive, the teachers didn’t want any fuss and the students felt the constant tension. But for me, more than that was the effect of living in a different culture. Living in two different cultures makes you aware of things you didn’t perceive before. It makes you open to possibilities.

Q: Why does Berkeley produce scientist/statesmen more than any other university? There was Glenn Seaborg, who famously advised 10 presidents, there is you and your role as director of LBNL, and most recently, there is Jennifer Doudna, who has taken a step back to ask the hard questions about how society should deal with CRISPR and the genetic engineering revolution it will enable.

A: Berkeley is the university that questions how to make society better. We engage with society. We have to. Having studied classical Greek thought and the Socratic method, I was attracted to this ethos and to Berkeley’s broader perspective. As for CRISPR and asking hard questions about its potential, it is a tribute to Berkeley and to Jennifer as a human being. It’s wonderful to see—that’s what we should be doing.

Q: As Vice Chancellor for Research, you deal with the ongoing consequences of the Bayh-Dole Act of 1980 and that law’s emphasis on working with industry. There have been controversies—the Novartis agreement and the Energy Biosciences Institute come to mind. How does this growing emphasis on entrepreneurship affect Berkeley’s research mission?

A: What is special about Berkeley is that we challenge the status quo. Becoming more interactive with the rest of the world is a really good thing. How do we most effectively accomplish this interaction? Entrepreneurship is one of the best ways of producing positive social change. It’s not the only dimension, but it’s one dimension we should be proud of.

The distinction between basic and applied research is not helpful. They are not in opposition, they are woven together. How can we allow these two different perspectives on research to work together organically to make discoveries that quickly become useful for society? That’s the question. Sometimes out of left field comes a discovery that produces practical outcomes really fast. I think CRISPR is an astonishing example. That’s Berkeley in action.

Q: From 2009 to 2016, you were the director of LBNL. You were in the thick of the explosion of energy and climate change research at the lab. Are you optimistic or pessimistic now about how we will adapt?

A: There have been many wonderful developments in the energy sector. Renewables are in a much different place than 10 years ago. One thing that no one anticipated then was the production of lowcost natural gas thanks to fracking, and how it would displace coal. Burning natural gas creates about half the carbon dioxide emissions, and it is much less polluting than coal. As a consequence, our CO 2 emissions are dropping. But the problem is still very big. How do societies remain resilient when facing the need to adapt? That is the question we will have to confront.

I am convinced that healthy societies with more and more people will be able to protect the environment. We have enormous human potential. There are now 20 to 25 countries with vibrant science cultures. In 20 years, there may be more than 50. We will all need to do everything we can to contribute to finding solutions. There is plenty to do. It makes me optimistic, not pessimistic.

Q: After all these years of being a researcher and scientist administrator, what comes next? What sort of guideposts do you use to navigate such a varied career?

A: Every day I’m involved with my research group. I’m enjoying what I do now. Someday this will be just another period in my history. I’ll move on.

In 1974 I returned from Greece to attend the University of Chicago. The classics were part of the humanities core curriculum there. Greek philosophy emphasized the search for truth and living an engaged life. I loved it. The lessons have stayed with me.

When I was a young assistant professor at Berkeley, I shared an office with Ken Pitzer. He had retired by then but was still conducting research. He was a brilliant theoretical chemist who had also been the president of Rice University and of Stanford. He had led a full life in a practical way and I admired that.

Q: How does it feel to win the National Medal of Science?

A: It was the honor of a lifetime. It was very special for me to meet President Obama, someone I admire. Only a few experiences like that happen in a person’s life.

These images depict structures of polymer nanocomposites.The different structures have very different degrees of stiffness. Alivisatos lab members conducted many experiments and then constructed lattice spring model simulations that provided useful tools for engineering the properties of polymer– matrix nanocomposites. This approach can help to shed light on how to finetune the elastic properties of structural polymeric nanocomposite fibers.