A Vision for the Future: The Joint Chemistry and Engineering Building

Preliminary drawings, showing basic volume capacity and site placement between Hearst Memorial Mining Building and Stanely Hall

We are proud to share the news that the College of Chemistry, in partnership with the College of Engineering, is launching a long-overdue endeavor: constructing a brand new research building on the site of the old Donner Lab.

Our joint proposal for the building has been approved by campus administration. We are excited to be embarking on this vision for state-of-the-art chemical sciences and engineering research.

Early donor support has helped us to get to where we are now, positioned to move ahead into a major fundraising campaign.

Given the campus financial climate, we know that this will be challenging, but we also know the College must have new research space in order to continue to excel and lead in chemistry and chemical & biomolecular engineering. Chemical sciences research in recent decades has undergone a revolution. The field has broadened and deepened. Our researchers are transforming the fight against genetic disease, devising new materials, designing more efficient catalysts, and advancing sustainability practices. Research of this nature — sustained breakthrough research — requires a robust infrastructure that we just don’t have. For some time, the College’s infrastructure has been taxed by the demands of modern research. The new space will provide optimal conditions for pioneering work to unfold.

We believe that housing Chemistry and Engineering labs in the same building will not only be effective in terms of fundraising and optimizing campus space, but will also promote interdisciplinary collaboration. Chemists and engineers, by sharing the building’s lab and office space, will be able to find new areas of collaboration and forge new synergistic research. Three potential themes for the building have emerged: translational chemical biology, advanced catalysis, and engineering for better health.

The new building project affords us a terrific opportunity to rally around our College and its commitment to top-level research and education. We are excited by the possibility — the Joint Chemistry and Engineering Building is starting to take shape. Stay tuned for more info!

Mindy Rex
Assistant Dean, College Relations & Development

Ron Silva (B.S. ’77, Chem)
Chair, CoC Building Project Committee

History of College of Chemistry on Campus

Chemistry has been offered by the University of California since its founding in 1868. The College of Chemistry itself was created as a unit within the University in 1872. It was housed—along with the other sciences—in South Hall, the first building to be completed on the Berkeley campus.

In 1890 a handsome brick building was constructed for the college on what is now the site of Hildebrand Hall. In time it came to be known as “The Old Chemistry Building,” and when it finally fell to the wrecker’s ball to make room for more modern facilities in 1966, its cupola was preserved. Now restored, the cupola sits on Chemistry Plaza above Giauque Laboratory.

The individual who was largely responsible for the rise of the college was Gilbert Newton Lewis, who became dean in 1912 and served until 1941. In order to accommodate the growth in faculty and students, the college acquired several other buildings during the Lewis years: the Chemistry Auditorium (built in 1913 and razed in 1959 to make way for Latimer Hall); the Freshman Chemistry Laboratory (built in 1915 and razed in 1962 to clear the site for the Physical Sciences Lecture Hall, now known as George C. Pimentel Hall); the Chemistry Annex, more popularly known as the “Rat House” (also built in 1915 and razed to clear the site for Hildebrand Hall in 1966); and the still-standing Gilman Hall (built in 1917).

The post-World War II years were a period of expansion and rebuilding: organic chemistry was strengthened, and chemical engineering became a bona fide program in 1945, leading to the formal establishment of the Department of Chemical Engineering in 1957 (the name was changed to the Department of Chemical and Biomolecular Engineering in 2010). As postwar enrollments soared, Lewis Hall was built in 1948, and enrollments largely continued to rise throughout the second half of the 20th century.

In response to the higher enrollments and the need for increasingly modern laboratory space, facilities for research and teaching were successively constructed: Giauque Hall (the Low Temperature Laboratory) in 1954 (renovated in the 1980s for Nobel laureate Yuan T. Lee), Latimer Hall in 1962, Hildebrand Hall in 1966, and the much-needed Tan Kah Kee Hall in 1997. The Loma Prieta earthquake of 1989 prompted a campus-wide reassessment of seismic safety, and comprehensive retrofits of Hildebrand, Latimer and Lewis Halls were completed in 2002.

History of Donner Lab

In 1936, endocrinologist John Lawrence took a leave of absence from his faculty position at Yale Medical School to visit his brother Ernest Lawrence at the new radiation laboratory on the Berkeley campus. Ernest Lawrence had established the lab in 1931 and, as its director, was instrumental in moving it to the hills above the campus in 1940, where it became the Lawrence Berkeley National Laboratory (LBNL).

Excited by the possibilities for using new isotopes in medicine, John Lawrence founded a program which later evolved into the Donner Laboratory and sparked the birth of a new field of medicine and research. Because of his lifelong contributions and pioneering work, John Lawrence became known as the “father of nuclear medicine.”

The Donner Laboratory building was built in 1942 (a north wing was added in 1955). It was funded by William H. Donner, president of the Donner Steel Corp., who donated money to the university for work in nuclear medicine following his son’s death from cancer. The Donner Lab was the world’s first center for research in the uses of atomic energy in biology and medicine. Several of the well-known radioisotopes used in nuclear medicine were discovered there, including technetium-99m, carbon-14, fluorine-18, oxygen-15 and thallium-201.

During World War II, Lawrence and his colleagues began adapting nuclear medicine techniques for wartime uses. Donner Lab researchers used radioisotopes of inert gases to study decompression sickness experienced by pilots who flew at high altitudes. These tracer studies would help increase understanding of the circulation and diffusion of gases.

Following World War II, the main focus of the researchers continued to be on the physiology and biophysics of such diseases as polycythemia vera, multiple myeloma and leukemia, on the use of radioactive tracers for treatment, and on the development of improved imaging techniques.

Today the Donner Lab is outmoded. It has seismic deficiencies, and its infrastructure cannot meet modern research laboratory needs. Nearly 80 percent of the space in Donner is currently assigned to LBNL, which administers the building. LBNL and UC are in the process of transferring control of the building back to the campus so that it can be demolished to make way for JCEB.

In this 1943 photo in the Donner Lab altitude chamber, four sailors breathe a mixture of radiolabeled gases to help determine how to protect pilots flying at high altitudes.